Твердотельные усилители мощности СВЧ диапазона со сверхоктавной полосой

Кищинский А.А.

АО «Микроволновые системы» Российская Федерация, 105120, г. Москва, ул. Нижняя Сыромятническая, 11 ak@mwsystems.ru

Аннотация: Представлен анализ технических и технологических решений, применяемых при конструировании сверхширокополосных транзисторных усилителей мощности СВЧ диапазона. Рассмотрены современные технологии и схемы построения монолитных интегральных усилителей мощности, достигнутые в промышленности и в разработках параметры, обсуждаются конструкции высокомощных усилителей. Приведены результаты ряда практических разработок, выполненных под руководством автора.

Ключевые слова: Усилитель мощности, нитрид галлия, монолитная интегральная схема, сверхширокополосный.

1. Введение

Интерес к применению усилителей мощности с полосой частот более октавы (такую полосу для определенности будем называть сверхширокой полосой частот) не ослабевает. Это связано с активным развитием технологии активных фазированных антенных решеток (АФАР), как радиолокационных, так и противорадиолокационных, применением короткоимпульсных и шумоподобных сигналов, требующих большой мгновенной полосы передающего тракта, переходом к многофункциональным и многодиапазонным радиосистемам.

Успех в создании высокоэффективных сверхширокополосных усилителей мощности (СШУМ) определяется сочетанием оптимальной схемотехнической реализации, рациональной конструкции и передовой технологии активных приборов. Технические решения и параметры приборов в данной работе рассматриваются применительно к диапазону частот 2 – 18 ГГц, охватывающему все основные радиолокационные (S-, C-, X-, Ku-) диапазоны и наиболее востребованные (2-6 ГГц, 6-18 ГГц, 4-18 ГГц) противорадиолокационные диапазоны частот.

2. Основные определения

Сравним качественные параметры транзисторного СВЧ усилителя мощности, имеющего различные полосы рабочих частот. Рабочей полосой частот будем считать такой участок частотного диапазона, в котором строго выполняются все заданные технические характеристики усилителя. Рассмотрим таблицу 1 применительно к элементарному транзисторному усилительному каскаду.

Таблица 1

Параметры и показатели	Узкополосный усилитель	Широкополосный усилитель	СШУМ
Перекрытие по частоте	менее, чем 1,2:1	от 1,2:1 до 2:1	более, чем 2:1
Сложность согласующих цепей	Простые, 2-3 элемента	Средней сложно- сти, 3-5 элемен- тов	Сложные, 5- 11 элементов
Реализуемый КСВН вхо- да	Менее 2,0	Высокий	Высокий
Возможность полезного управления нагрузками на гармониках	Развитая	Ограниченная	Практически отсутствует
Достижимый электрон- ный КПД, %	до 80%	до 45-50%	20-30%
Неравномерность АЧХ	Практически нет	Средняя	Высокая
Аппаратурный КПД	Близок к элек- тронному	Меньше элек- тронного	Значительно меньше электронного

При этом «аппаратурный КПД» [1] определим, как

$$\eta a = P_{\text{BMX.MUH}} / P_{\text{потр.макс}}, \qquad (1)$$

где:

Р_{вых.мин} - минимальная в рабочей полосе частот выходная мощность усилителя;

Р_{потр.макс} - максимальная в рабочей полосе частот мощность потребления усилителя от источника питания.

Параметр Ŋа важен для проектирования системы, оценки энергопотребления системы при эксплуатации, предельной выходной мощности источника питания. При высокой неравномерности выходной мощности и равномерном электронном КПД, аппаратурный КПД СШУМ может быть в несколько раз меньше электронного, а искусство проектирования СШУМ сегодня оценивается результатами повышения как первого, так и второго параметров.

Совершенствование параметров СШУМ в значительной степени связано с прогрессом в параметрах СВЧ транзисторов и технологий их производства, а они в свою очередь – с развитием технологии СВЧ интегральных схем и дискретных транзисторов на нитриде галлия (GaN). Ниже остановимся на результатах, полученных в последнюю пятилетку.

3. Компонентная база СШУМ

Основой конструкции СШУМ сантиметрового диапазона остаются дискретные транзисторы в виде кристаллов и монолитные интегральные схемы (МИС) на основе GaN технологий. Рассмотрим современный рынок дискретных GaN транзисторов в виде кристаллов, коммерчески доступные типы (серии) и параметры приборов приведены в таблице 2.

Номенклатура и разнообразие освоенных в последние годы дискретных GaN транзисторов значительно выросли, к традиционным изготовителям кристаллов Qorvo (TriQuint) и Wolfspeed (Cree) присоединились французская UMS и южнокорейская WavePia, предлагаются также транзисторы, изготавливаемые по фаундри-технологии NP25-00 на производстве Win Semiconductor компаниями AMCOM Communications (США) и ООО «Резонанс» (Россия). В стадии тестирования кристаллы, изготавливаемые AO «Светлана-Рост» и AO «Светлана-Электронприбор». Ряд российских компаний развивают технологии CBЧ приборов на нитриде галлия, однако, коммерчески доступные кристаллы на отечественном рынке отсутствуют.

Для конструирования СШУМ сантиметрового диапазона наибольший интерес представляют относительно низковольтные технологии с длиной затвора 0,15 - 0,25 мкм и рабочим напряжением 20 - 28 В. Это связано с тем, что при повышении рабочего напряжения пропорционально увеличивается активная часть оптимального импеданса нагрузки, требуемого для обеспечения максимума выходной мощности или КПД. При этом его реактивная часть, определяемая паразитными емкостями сток-исток и сток-затвор транзистора, изменяется мало. В результате собственная эквиТаблица 2

Тип транзи- стора	Производитель	Ғ₅, ГГц	Р _{вых} , Вт	КПД _{ст} , %	Длина затвора, мкм	U _c , B		
Транзисторы, освоенные в производстве до 2012 года								
TGF2023-2-xx	Qorvo	18	6 - 50	60	0,25	28		
CGH600xxD	Wolfspeed	6	8 - 120	65	0,5	28		
CGHV1JxxD	Wolfspeed	18	6, 25, 70	60	0,25	40		
Тран	зисторы, освоенн	ые в прои	изводстве в 2	2013 - 20	18 годах			
CGH800xxD	Wolfspeed	8	15 - 60	65	0,4	28		
CGHV40320D	Wolfspeed	4	320	65	0,5	50		
CGHV60xxxD	Wolfspeed	6	40 - 170	65	0,5	50		
TGF293x	Qorvo	25	2 - 11	50	0,15	28		
TGF295x	Qorvo	12	7 - 70	55	0,25	32		
CHK901x-99F	UMS	12	55, 85	50	0,25	30		
CHK8015-99F	UMS	18	20	68	0,25	30		
AMxxxWN	AMCOM	15	2 - 40	50	0,25	28		
RT10-RT70	Резонанс	15	5 - 35	45	0,25	28		
ТА284 (разр)	Светлана-Рост	6	15		0,5	28		
WP48xxxxxx	WavePia	5-10	15 - 340		0,45	48		
WP28xxxxx	WavePia	15	15 - 60		0,25	28		

Конструкции усилительных элементов (каскадов) СШУМ можно условно разделить на три класса: гибридно-интегральные (ГИС), монолитно-интегральные (МИС) и квази-монолитные (КМИС), их основные свойства отражены в таблице 3.

Таблица 3

Параметры и показатели	ГИС	МИС	КМИС
Габариты	большие	малые	малые
Возможность настройки параметров	есть	нет	ограниченная
Стоимость компонентов	малая	малая	высокая
Возможность реализации элементов с сосредоточен- ными параметрами	нет	есть	есть
Активные элементы	Дискретные транзисторы	Интегральные транзисторные структуры	Дискретные транзисторы
Практический частотный предел использования	12 ГГц	Не ограничен	14 ГГц
Затраты на отработку пара- метров	малые	высокие	средние

Выбор конструктивного исполнения усилительных элементов диктуется спецификой требований, предъявляемых к СШУМ, предполагаемым объемом выпуска изделий, лимитами затрат на разработку. С точки зрения схемного построения большинство СШУМ (имеются в виду оконечные каскады усиления) выполняются трех основных типов: балансные усилители, многокаскадные усилители с непосредственными связями и усилители с распределенным усилением (УРУ).

Достоинствами балансной схемы, широко применяемой в ГИС усилителях, являются хорошее согласование входа и выхода, малая неравномерность АЧХ, улучшенная устойчивость. К недостаткам можно отнести ограничения полосы частот, накладываемые габаритами и сложностью квадратурных мостов, большие габариты каскадов. Параметры таких усилителей существенным образом зависят от искусства конструирования сверхширокополосных квадратурных мостов, обзору некоторых конструкций таких устройств посвящена работа [2].

Сводные данные по достигнутым параметрам коммерческидоступных монолитных GaN УРУ в диапазоне частот 2-18 ГГц приведены в таблице 4. Выходные мощности и КПД усилителей соответствуют компрессии усиления в 3-5 дБ относительно условий линейного режима, что, впрочем, характерно для любых типов GaN усилителей.

Тип МИС	Производитель	Рвых, Вт	Ку.лин, дБ	КПДдоб, %	Uc, B
NC11647C-218P2	METDA	2	11	10 - 15	28
ASL 4046	Aelius	3	9,0	13 - 20	25
CMD-184	Custom MMIC	3 - 5,5	13		28
TGA2214	Qorvo	5 - 6	22 - 25	22	22
HMC1087-Die	Analog Devices	8	11 - 12	20 - 24	28
NC11651C-218P8	METDA	8	12	20 - 25	28
GNM-2203	SIWI	9	9	22	28
TGA2573	Qorvo	10	9	22 - 30	30
NC11688C-218P10	METDA	10	20	20	28
NDNC01056	NEDITEK	10	12	20	28

Таблица 4

Очевидными достоинствами схем УРУ являются очень широкая потенциальная полоса рабочих частот, хорошее согласование входа и выхода, малая неравномерность АЧХ. Основным недостатком следует признать относительно низкий КПД, над увеличением которого интенсивно трудятся лучшие умы зарубежной СВЧ микроэлектроники. Минимальный в полосе частот КПД по добавленной мощности в 20% является для усилителей этого класса очень хорошим результатом.

Усилители с реактивным согласованием, в том числе (как частный случай) многокаскадные, являются самыми распространенными представителями ГИС, МИС и КМИС усилителей мощности, в том числе, со сверхоктавной полосой. В данном случае электрические характеристики достигаются совершенствованием выходной согласующей цепи, трансформирующей стандартное волновое сопротивление тракта (50 Ом) к оптимальному нагружающему импедансу выходного транзистора (или линейки синфазно возбуждаемых транзисторных структур), обеспечивающему на всех частотах диапазона максимальную выходную мощность, ли-

бо максимальный КПД, либо требуемый компромисс между этими параметрами.

Теоретически, данная схема построения должна обеспечивать наилучшие энергетические характеристики, для узкополосных и субоктавных усилителей это действительно так. Однако, для СШУМ преимущества оказываются не так велики, что иллюстрируется данными таблицы 5, в которой приведены параметры промышленных МИС СШУМ диапазона 6-18 ГГц, выполненных по многокаскадным схемам с реактивным согласованием.

Тип МИС	Производитель	Р _{вых} , Вт	Ку.лин, дБ	КПД _{доб} , %	Uc, B
TGA2501	Qorvo	2,5	26 ± 2	18 - 30	8
[3]	(2017)	6 - 10	11 - 15	17 - 27	8
GNM2305	SIWI	5	16	18	8
NC116137C- 618P6	METDA	6 - 8	28 ± 3	22 - 25	28
NC11669C- 618P10	METDA	10 - 16	20	20 - 25	24
TGA2963	Qorvo	20 - 35	32 ± 4,5	20 - 28	22
[4]	(2017)	16 - 20	12 ± 1	22 - 40	24
[5]	(2018)	30 - 53	17 - 25	13 - 30	25

Таблица 5

В таблице для сравнения приведены также параметры трех типов МИС, выполненных по технологии GaAs pHEMT с мощностью 2,5-6 Вт, видно, что КПД этих приборов на 3-5% (всего лишь) ниже, чем у GaN усилителей. Также следует отметить, что площадь кристалла GaAs МИС составляет 16-32 мм², в то время, как GaN усилители той же мощности размещаются на площади кристалла 5-6 мм².

При высоком усилении и высокой выходной мощности (в 2-3 раза большей, чем достигнута в схемах УБВ), многокаскадные СШУМ на основе схем с реактивным согласованием имеют два серьезных недостатка: высокую неравномерность АЧХ (2-3 дБ на каскад) и высокий КСВН вы-

хода, сильно затрудняющие применение таких МИС. При этом заметного улучшения достигнутых значений КПД по сравнению со схемами GaN УБВ, не наблюдается.

4. Особенности схемотехники СШУМ

Традиционным и достаточно хорошо изученным для узкополосных vсилителей методом повышения КПД является (называя обобщенно) метод управления нагрузками на гармониках основной частоты [6]. До 2009 года трудности расширения полосы частот усилителя при сохранении возможности оптимального управления нагрузками на гармониках считались непреодолимыми. Однако, авторы опубликованной в 2009 году статьи [7] дали старт наступлению на низкий КПД СШУМ, предложив использовать принцип комбинации известных высокоэффективных режимов усиления, плавно переходящих из одного в другой с ростом частоты. Следует отметить, правда, что действительно весомые результаты (таблица 6) получены для схем одиночного каскада с реактивным согласованием и для относительно низких частот (до 2,5-4 ГГц), на которых собственные реактивности мощных GaN транзисторов еще позволяют им демонстрировать свойства идеальных ключей, необходимые для реализации высокоэффективных нелинейных режимов колебаний. На более высоких частотах результаты для СШУМ пока более скромны.

Публикация	Тип использо- ванного транзи- стора	ΔF, ГГц	Р _{вых} , Вт	КПД _{ст} , %	КПД _{доб} , %
[7]	Cree, 10W	1,4 - 2,6	10	60 - 65	50 - 60
[8]	CGH60015D	0,4-4,1	10 - 16	40 - 62	38 - 58
[9]	CGH40010F	1,4-2,5	12 - 18	68 - 82	65 - 80
[10]	CGH40120F	0,6-2,6	80 - 115	49 - 65	44 - 55
[11]	CGH40025F	0,2 - 1,8	16 - 32		60 - 82

Таблица 6

Одним из эффективных способов построения СШУМ является использование для повышения, либо понижения оптимального импеданса нагрузки противофазных делителей мощности (мостов) и последовательно-включенных (stacked) транзисторных структур, что позволяет в ряде

случаев вообще отказаться от ограничивающих полосу частот реактивных элементов и трансформаторов в выходной согласующей цепи. Фактически, в этом случае не цепь трансформирует импеданс к оптимальному для активного элемента, а активный элемент «трансформируется» к заданному волновому сопротивлению линии передачи. Этот прием применен в работе [12] для суммирования четырех 25-Ваттных интегральных GaN MИС, при этом усилители, спроектированные для работы в 50-Омном тракте, включаются попарно параллельно, а требуемое для них при этом волновое сопротивление 25 Ом формируется коаксиальным противофазным мостом на ферритовом сердечнике. Такое решение позволило получить в полосе частот 0,1 – 1,8 ГГц выходную мощность усилителя от 94 до 142 Вт при КПД стока от 41 до 74%.

5. Параметры современных СШУМ

Для иллюстрации современного технического уровня СШУМ приведем параметры твердотельных усилителей в диапазонах частот 2-18 ГГц и 6-18 ГГц (таблица 7).

Тип СШУМ	Производи- тель	ΔF, ГГц	Р _{вых} , Вт	К _{у.лин} , дБ	η _a , %	Объем, см ³
MPH020180G5041	Meuro	2 - 18	13	50		187
AMP1070	Exodus	2 - 18	30	50	5,2	552
RFLUPA0618GC	RF Lambda	6 - 18	20 - 40	56 - 62	6,2	889
PA1062	Mitron PTI	6 - 18	40	46	7,4	1134
RCA60180H46A	RFCore	6 - 18	40 - 45	29	5,0	31400
AMP1122	Exodus	6 - 18	100	60	7,8	1846
L0618-50-T523	Microsemi	6 - 18	100	55		3934
MPH060180G5053	Meuro	6 - 18	200	50		10080

Таблица 7

Отдельные применения СШУМ, например, АФАР непрерывного режима, требуют не столько наращивания выходной мощности усилителя, сколько повышения удельных параметров (КПД, удельной массы и объема на Ватт выходной мощности). Этому направлению уделяют большое внимание разработчики АО «Микроволновые системы», создавая новые

СШУМ для отечественного рынка. Основные параметры новых усилителей мощности класса СШУМ, разработанных специалистами предприятия в последние годы, приведены в таблице 8.

Тип СШУМ	ΔF, ГГц	Р _{вых} , Вт	Функции	$\eta_{a}, $	Объем, см ³	Масса, кг
«Взлет-1»	1 - 4	2*12	А, Т, Д, ДТ, М, Ф	17	155	0,3
УМ1535Б	2 - 4	40	А, Т, Д, ДТ, М	22	253	0,5
УМ1612C	2 - 8	15	А, Т, Д, ДТ, М	16	124	0,24
УМ1620C	1 - 6	30	А, Т, Д, ДТ, М	14,2	280	0,51
УМ1520Б	4 - 12	20	А, Т, Д, ДТ, М	16	207	0,35
УМ1710Б	5 - 18	12	А, Т, Д, ДТ, М	10	157	0,3
«Взлет-2»	4 - 12	2*15	А, Т, Д, ДТ, М, Ф	12,5	172	0,3
«Взлет-ЗА»	8 - 18	2*6	А, Т, Д, ДТ, М, Ф	10	147	0,3

Таблица 8

Встроенные функции: А – цифровой аттенюатор управления усилением; Т – термокомпенсация усиления; Д – детектор выходной мощности; ДТ – датчик температуры корпуса; М – быстрый модулятор силового питания; Ф – нормированные ФЧХ.

6. Заключение

Современные технологии транзисторов и МИС на нитриде галлия позволяют создавать усилительные элементы со сверхоктавной полосой и выходной мощностью более 100 Вт при КПД 40-60% в дециметровом диапазоне, и более 20-30 Вт при КПД 20-30% в сантиметровом. Твердотельные усилители мощности диапазона 6-18 ГГц уверенно начинают занимать традиционную нишу ЛБВ 100-Ваттного класса, однако, аппаратурный КПД изделий всех категорий оставляет желать лучшего, а именно – для надежного питания 40-Ваттного усилителя в аппаратуре должен быть предусмотрен как минимум 1-киловаттный источник питания.

Усилители со сверхоктавной полосой частот, разработанные в АО «Микроволновые системы» имеют в 2-3 раза больший аппаратурный КПД и меньший удельный (на единицу выходной мощности) объем, и соответственно, массу.

Список литературы

[1] Кищинский А.А. Сверхширокополосные твердотельные усилители мощности СВЧ диапазона: схемотехника, конструкции, технологии. Электроника и микроэлектроника СВЧ. Сборник статей VII Всероссийской конференции. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2018, С. 4-13.

[2] Кищинский А.А., Радченко А.В., Радченко В.В. Широкополосные квадратурные делители/сумматоры для применения в усилителях СВЧ мощности. Материалы 23-й Крымской международной конференции «СВЧ техника и телекоммуникационные технологии». Севастополь, Вебер, 2013. С.6 - 10.

[3] M. Meghdadi and A. Medi. Design of 6–18-GHz High-Power Amplifier in GaAs pHEMT Technology. IEEE Transactions on MTT, vol. 65, Issue: 7, July 2017, - P. 2353 – 2360.

[4] P. Tran et al. 2 to 18 GHz High-Power and High-Efficiency Amplifiers. 2017 IEEE International Microwave Symposium, 2017.

[5] M. Litchfield, J. Komiak. A 6–18GHz 40W Reactively Matched GaN MMIC Power Amplifier. 2018 IEEE International Microwave Symposium, 2018.

[6] Крыжановский В.Г. Транзисторные усилители с высоким КПД. Донецк: Апекс, 2004. 448с.

[7] P. Wright et al. A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA. IEEE Transactions MTT, vol. 57, 2009, №12, - P. 3196-3204.

[8] C. Andersson et al. Decade Bandwidth High Efficiency GaN HEMT Power Amplifier Designed With Resistive Harmonic Loading. 2012 IEEE International Microwave Symposium, 2012.

[9] M. Yang et al. Highly Efficient Broadband Continuous Inverse Class-F Power Amplifier Design Using Modified Elliptic Low-Pass Filtering Matching Network. IEEE Transactions on MTT, Vol. 64, NO. 3, 2016 – P. 1515 – 1525.

 [10] T. Arnous et al. Multi-Octave GaN High Power Amplifier Using Planar Transmission Line Transformer. Proceedings of the 46th European Microwave Conference, 2016.
- P. 580 - 583

[11] Y. Zhuang et al. Design of Multioctave High-Efficiency Power Amplifiers Using Stochastic Reduced Order Models. IEEE Transactions on MTT, VOL. 66, NO. 2, 2018 – P. 1015 – 1023.

[12] K. Krishnamurthy et al. A 0.1-1.8 GHz, 100 W GaN HEMT Power Amplifier Module. Compound Semiconductor Integrated Circuit Symposium (CSICS), 2010. – P. 1-4.